• Semiar Reports

    Read More

Landmine Detection Seminar Report



This report will review the development and applications of Ground Penetrating Radar (GPR) technology to address the challenges of reliably detecting landmines. It emphasise the relevance of GPR technique in landmine detection performance to civilian or humanitarian demining programs. In this discussion, we will concentrate on Ground Penetrating Radar (GPR). This ultra wide band radar provides centimeter resolution to locate even small targets. There are two distinct types of GPR, time-domain and frequency domain. a method to identify landmines in various burial conditions. A ground penetration radar is used to generate data set, which is then processed to reduce the ground effect and noise to obtain landmine signals. Principal components and Fourier coefficients of the landmine signals are computed, which are used as features of each landmine for detection and identification. Landmine removal is a critical problem faced by many countries around the world, and the situation can be compounded by natural disasters or land development. Therefore, it is an urgent issue to detect landmines in the ground and remove them safely. The process of landmine removal starts with the detection of landmines in the ground. The GPR can be used as a stand-alone sensor or as a complementary sensor to a metal detector. Moreover, its weight can be made light, so that it can be installed in a handheld system or in a vehicle-mounted system in the form of an array of multiple antenna elements

Landmines and unexploded ordnance (UXO) are a legacy of war, insurrection, and guerilla activity. Landmines kill and maim approximately 26,000 people annually. In Cambodia, whole areas of arable land cannot be farmed due to the threat of landmines. United Nations relief operations are made more difficult and dangerous due to the mining of roads. Current demining techniques are heavily reliant on metal detectors and prodders.

Technologies which are used for landmine detection are Metal detectors which are capable of finding even low-metal content mines in mineralized soils; nuclear magnetic resonance, fast neutron activation and thermal neutron activation; thermal imaging and electro-optical sensors which can detect evidence of buried objects; biological sensors such as dogs, pigs, bees and birds; chemical sensors such as thermal fluorescence which detects airborne and waterborne presence of explosive vapors.

In this discussion, we will concentrate on Ground Penetrating Radar (GPR). This ultra wide band radar provides centimeter resolution to locate even small targets. There are two distinct types of GPR, time-domain and frequency domain. Time domain or impulse GPR transmitters discrete pulses of nanosecond duration and digitizes the returns at GHz sample rates. Frequency domain GPR systems transmit single frequencies either uniquely, as a series of frequency steps, or as a chirp. The amplitude and phase of the return signal is measured. The resulting data is converted to the time domain. GPR operates by detecting the dielectric contrasts in the soils, which allows it to locate even non metallic mines.

In this discussion we deal with buried anti-tank (AT) and anti-personnel (AP) landmines which require close approach or contact to activate. AT mines range from about 15 to 35 cm in size. They are typically buried up to 40cm deep, but they can also be deployed on the surface of a road to block a column of machinery. AP mines range from about 5 to 15cm in size. AT mines which are designed to impede the progress of destroy vehicles and AP mines which are designed to kill and maim people.







Download Link beloew :



Download




Similiar seminar Topics

26 page

GPRS Technology

22 page

Fuel Cell

22 page

Adaptive optics





comments powered by Disqus